
DO Qualification Kit

Model-Based Design Workflow for DO-178B

R2011b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

DO Qualification Kit Model-Based Design Workflow for DO-178B
© COPYRIGHT 2010–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2010 Online only New for Version 1.3 (Release 2010b)
April 2011 Online only Revised for Version 1.4 (Release 2011a)
September 2011 Online only Revised for Version 1.5 (Release 2011b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

DO-178B Software Life Cycle

1
DO-178B Software Life Cycle Overview 1-2

Model-Based Design Workflow in DO-178B 1-3

Planning Process . 1-5
Software Development and Integral Processes Activities are
Defined . 1-6

Transition Criteria, Inter-Relationships, and Sequencing
Among Processes are Defined . 1-7

Software Life-Cycle Environment Is Defined 1-8
Additional Considerations are Addressed 1-8
Software Development Standards are Defined 1-8
Software Plans Comply with DO-178B 1-9
Software Plans are Coordinated . 1-9

Software Development Process . 1-10
High-Level Requirements are Developed 1-10
Derived High-Level Requirements are Developed 1-11
Software Architecture Is Developed 1-11
Low-Level Requirements are Developed 1-11
Derived Low-Level Requirements are Developed 1-12
Source Code Is Developed . 1-12
Executable Object Code Is Produced and Integrated in the
Target Computer . 1-12

Verification of Requirements Process 1-13
Software High-Level Requirements Comply with System
Requirements . 1-14

High-Level Requirements Are Accurate and Consistent . . 1-15
High-Level Requirements Are Compatible with the Target
Computer . 1-15

High-Level Requirements Are Verifiable 1-16
High-Level Requirements Conform to Standards 1-17

iii

High-Level Requirements Are Traceable to System
Requirements . 1-17

Algorithms Are Accurate . 1-18

Verification of Design Process . 1-19
Low-Level Requirements Comply with High-Level
Requirements . 1-20

Low-Level Requirements Are Accurate and Consistent . . . 1-21
Low-Level Requirements Are Compatible with the Target
Computer . 1-22

Low-Level Requirements Are Verifiable 1-23
Low-Level Requirements Conform to Standards 1-23
Low-Level Requirements Are Traceable to High-Level
Requirements . 1-24

Algorithms Are Accurate . 1-25
Software Architecture Is Compatible with High-Level
Requirements . 1-26

Software Architecture Is Consistent 1-26
Software Architecture Is Compatible with the Target
Computer . 1-27

Software Architecture Is Verifiable 1-27
Software Architecture Conforms to Standards 1-28
Software Partitioning Integrity Is Confirmed 1-28

Verification of Coding and Integration Process 1-29
Source Code Complies with Low-Level Requirements 1-30
Source Code Complies with Software Architecture 1-30
Source Code Is Verifiable . 1-30
Source Code Conforms to Standards 1-30
Source Code Is Traceable to Low-Level Requirements 1-31
Source Code Is Accurate and Consistent 1-31
Output of Software Integration Process Is Complete and
Correct . 1-31

Testing of Outputs of Integration Process 1-32
Executable Object Code Complies with High-Level
Requirements . 1-33

Executable Object Code Is Robust with High-Level
Requirements . 1-34

Executable Object Code Complies with Low-Level
Requirements . 1-35

Executable Object Code Is Robust with Low-Level
Requirements . 1-36

iv Contents

Executable Object Code Is Compatible with Target
Computer . 1-37

Verification of Verification Process Results 1-38
Test Procedures Are Correct . 1-39
Test Results Are Correct and Discrepancies Explained . . . 1-39
Test Coverage of High-Level Requirements Is Achieved . . 1-39
Test Coverage of Low-Level Requirements Is Achieved . . . 1-40
Test Coverage of Software Structure (Modified
Condition/Decision) Is Achieved . 1-40

Test Coverage of Software Structure (Decision Coverage) Is
Achieved . 1-40

Test Coverage of Software Structure (Statement Coverage)
Is Achieved . 1-41

Test Coverage of Software Structure (Data Coupling and
Control) Is Achieved . 1-41

Software Configuration Management Process 1-42
Configuration Items Are Identified 1-43
Baselines and Traceability Are Established 1-43
Problem Reporting, Change Control, Change Review, and
Configuration Status Accounting Are Established 1-43

Archive, Retrieval, and Release Are Established 1-44
Software Load Control Is Established 1-44
Software Life Cycle Environment Control Is Established . . 1-44

Software Quality Assurance Process 1-45
Assurance Is Obtained That Software Development and
Integral Processes Comply with Approved Software
Plans and Standards . 1-45

Assurance Is Obtained That Transition Criteria for the
Software Life Cycle Processes are Satisfied 1-46

Software Conformity Review Is Completed 1-46

Certification Liaison Process . 1-47
Communication and Understanding Between the Applicant
and the Certification Authority Is Established 1-47

The Means of Compliance Is Proposed and Agreement
with the Plan for Software Aspects of Certification is
Obtained . 1-48

Compliance Substantiation Is Provided 1-48

v

Abbreviations

A
Abbreviations . A-2

References

B
Normative References . B-2

Index

vi Contents

1

DO-178B Software Life
Cycle

• “DO-178B Software Life Cycle Overview” on page 1-2

• “Model-Based Design Workflow in DO-178B” on page 1-3

• “Planning Process” on page 1-5

• “Software Development Process” on page 1-10

• “Verification of Requirements Process” on page 1-13

• “Verification of Design Process” on page 1-19

• “Verification of Coding and Integration Process” on page 1-29

• “Testing of Outputs of Integration Process” on page 1-32

• “Verification of Verification Process Results” on page 1-38

• “Software Configuration Management Process” on page 1-42

• “Software Quality Assurance Process” on page 1-45

• “Certification Liaison Process” on page 1-47

1 DO-178B Software Life Cycle

DO-178B Software Life Cycle Overview
The DO-178B software life cycle consists of the following processes:

• Planning

• Software development

• Verification of requirements

• Verification of design

• Verification of coding and integration

• Testing of outputs of integration

• Verification of verification results

• Software configuration management

• Software quality assurance

• Certification liaison process

There are objectives that must be met for each of the life cycle stages in
DO-178B. In Appendix A of DO-178B, these objectives are summarized
in tables. This document summarizes those tables and provides
recommendations on meeting the objectives using a Model-Based Design
process. Available Model-Based Design tools that can be used in achieving the
objectives are also included.

1-2

Model-Based Design Workflow in DO-178B

Model-Based Design Workflow in DO-178B
The following diagram shows a Model-Based Design workflow that addresses
the development and verification activities in a DO-178B software life cycle.

Requirements Model Source code Object code

CompilingCodingModeling

Development artifact

Software development activity

Verification, validation, or tracing activity

Requirements
validation

Model
conformance

Code
conformance

Model traceability Code traceability

Code
verification

High-level
verification

Low-level
verification

Model
verification

The following table lists the MathWorks® products and capabilities that can
be used in each step of the workflow as Model-Based Design tools.

Workflow Step Available Products and Capabilities for Model-Based Design

Requirements
validation

Manual review

Modeling Simulink®, Stateflow®

1-3

1 DO-178B Software Life Cycle

Workflow Step Available Products and Capabilities for Model-Based Design

Model traceability Simulink® Verification and Validation™ — Requirements Management
Interface (RMI), Simulink® Report Generator™ — System Design
Description report*

Model conformance Simulink — Model Advisor checks, Simulink® Coder™ — Model Advisor
checks, Simulink Verification and Validation — Model Advisor checks,
Simulink Verification and Validation — DO-178B checks*

Model verification SystemTest™ — Limit Check element*, Simulink® Design Verifier™
— Property Proving, Simulink Verification and Validation — Model
Coverage*, Simulink Report Generator — System Design Description
report*

Coding Embedded Coder™

Code traceability Embedded Coder — Traceability Report

Code conformance Polyspace® Products for C/C++*

Code verification Embedded Coder — Code Generation Report

Compiling Embedded Coder — IDE Link

Low-level verification SystemTest — Limit Check element*, Simulink Design Verifier —
Test Generation, Embedded Coder — IDE Link, Polyspace Products
for C/C++*

High-level verification SystemTest — Limit Check element*, Embedded Coder — IDE Link,
Polyspace Products for C/C++*

*The DO Qualification Kit product may be used to support DO-178B tool qualification.

1-4

Planning Process

Planning Process
The following table contains a summary of the planning process objectives
from DO-178B, including the objective, applicable DO-178B reference sections,
and software levels applicable to the objective. The table also describes the
potential impact to the process when using Model-Based Design.

Table A-1: Planning Process

Objective Sections Software
Levels

Model-Based Design Process
Impact

1 Software development
and integral processes
activities are defined.

4.1a, 4.3 A, B, C, D Must include Model-Based Design
as part of the development process.

2 Transition criteria,
inter-relationships
and sequencing among
processes are defined.

4.1b, 4.3 A, B, C Must include Model-Based
Design transition and sequencing
relationships.

3 Software life cycle
environment is
defined.

4.1c A, B, C Must include Model-Based Design
tools in the life cycle processes.

4 Additional
considerations are
addressed.

4.1d A, B, C, D If applicable to the project and
tool qualification, must address
any EASA Certification Review
Items and FAA Issue Papers. DO
Qualification Kit product available
for tool qualification.

5 Software development
standards are defined.

4.1e A, B, C As part of the development
standards, must include modeling
standards.

6 Software plans comply
with DO-178B.

4.1f, 4.6 A, B, C No impact

7 Software plans are
coordinated.

4.1g, 4.6 A, B, C No impact

1-5

1 DO-178B Software Life Cycle

The following sections describe in more detail the potential impacts for each
planning process objective when using Model-Based Design, if applicable, as
compared to traditional development

Software Development and Integral Processes
Activities are Defined
Model-Based Design must be defined as one of the activities in the software
development process. Models may be defined as high-level or low-level
software requirements, or both. Library or model reference components may
be developed and defined as low-level software requirements. The models
that use these components to provide full functionality may be defined as
high-level software requirements. The following scenarios describe three
possible software development processes:

• Scenario 1 – Models developed at the system level are used to generate
code directly

High-level system requirements allocated to system design are in the form
of textual requirements. The models are developed during the system
design process and allocated to software. The models become both the high-
and low-level software requirements. The models must meet predefined
standards and must be adequately detailed so that code can be generated
directly from the models. As a part of the development process, a predefined
set of library blocks and reusable reference models may be designed for
systems engineers. These requirements for the library blocks and reference
models may be considered to be derived software requirements, because
they do not trace to the higher-level requirements.

Under this scenario, the verification objectives from tables A-3 and A-4 are
combined and applied to the single model.

• Scenario 2 – Models developed at the system level are not used directly
to generate code

High-level system requirements allocated to system design are in the
form of textual requirements. The models are developed during the
system design process and allocated to software. These models become
the high-level software requirements, but they are not detailed enough to
generate code directly. An example of this type of model is a Simulink
diagram that uses continuous blocks which are not appropriate for
embedded real-time code. The software engineering process takes these

1-6

Planning Process

models, modifies them, and adds details as necessary prior to code
generation. These modified models then become the low-level software
requirements.

Under this scenario, the verification objectives from table A-3 are applied
to the high-level model, and the objectives from table A-4 are applied to
the low-level model.

• Scenario 3 – System-level textual requirements are allocated to software

The system-level requirements and design allocated to software are in the
form of textual high-level software requirements. The models are developed
as part of the software engineering process and are detailed enough to
generate code. These models are the low-level software requirements.

Under this scenario, the verification objectives from table A-3 are applied
to the high-level textual requirements, and the objectives from table A-4
are applied to the model.

Address change control and configuration management of the models during
the planning process.

Transition Criteria, Inter-Relationships, and
Sequencing Among Processes are Defined
When Model-Based Design begins, it must be defined. This stage is when the
higher-level requirements (either system requirements or high-level software
requirements) are developed, configured, and approved.

When code is generated, the code must be defined. This stage is when the
models have been developed, configured, and approved. The steps to approve
the models as complete and correct must be defined and may include model:

• Reviews

• Simulation testing

• Static analysis

• Dynamic analysis

1-7

1 DO-178B Software Life Cycle

Software Life-Cycle Environment Is Defined
Model-Based Design tools used in the development and verification processes
must be defined. The tools may include the MATLAB®, Simulink, Stateflow,
MATLAB® Coder™, Simulink Coder, Embedded Coder, Polyspace products
for C/C++, Simulink Verification and Validation, Simulink Design Verifier,
SystemTest, and Simulink Report Generator products.

Additional Considerations are Addressed
If any Model-Based Design tools are qualified as development or verification
tools, each of the tools to be qualified must be identified and the tool
qualification activities must be defined. The DO Qualification Kit product
may be used in the qualification of MathWorks verification tools.

When Model-Based Design is used on a program, the Federal Aviation
Administration (FAA) provides an Issue Paper (IP), or, for the European
Aviation Safety Agency (EASA), a Certification Review Item (CRI). Items
in the program-specific IP and CRI must be addressed during planning.
There may be requirements to trace the models to higher-level requirements
and to trace the code to the models. Verification of the models and
executable object code against the higher-level requirements may also be
addressed. For software levels A and B, independence of the model and
test developers may need to be ensured as part of the verification against
the higher-level requirements. If an automated tool verifies the executable
object code against the model, then that tool may have to be shown to be
independent of the automatic code generator and compiler. The use of an
automated tool to verify the executable object code against the model does
not eliminate the verification of the executable object code against the
higher-level requirements. The automated verification tool may only be used
to supplement the higher-level requirements-based tests.

Software Development Standards are Defined
Because the models may be mapped to high-level or low-level requirements,
or both (see “Software Development and Integral Processes Activities are
Defined” on page 1-6), modeling standards must be in place to satisfy the
requirements standards objectives. Compliance to the standards have to be
verified through the use of tools and human reviews.

1-8

Planning Process

For the Embedded Coder tool, MISRA C®1 coding standards can be used,
with a few minor exceptions. Some constructs in the generated code, such as
naming conventions, can be controlled by users to meet specific customer
coding standards. Compliance to the standards must be verified through tools
and human reviews.

Software Plans Comply with DO-178B
A Plan for Software Aspects of Certification (PSAC) must be developed, the
same as for traditional development programs.

Software Plans are Coordinated
The Plan for Software Aspects of Certification (PSAC) must be configured
under change control and approved by the applicable certification authorities
as part of the program, as in a traditional development process.

1. The Motor Industry Software Reliability Association. MISRA-C:2004 Guidelines for the
use of the C language in critical systems. MIRA Limited, 2004.

1-9

1 DO-178B Software Life Cycle

Software Development Process
The following table contains a summary of the software development process
objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also describes the available Model-Based Design tools for satisfying the
objectives.

Table A-2 Software Development Process

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 High-level requirements are
developed.

5.1.1a A, B, C, D Simulink, Stateflow

2 Derived high-level requirements
are developed.

5.1.1b A, B, C, D Simulink, Stateflow

3 Software architecture is
developed.

5.2.1a A, B, C, D Simulink, Stateflow

4 Low-level requirements are
developed.

5.2.1a A, B, C, D Simulink, Stateflow

5 Derived low-level requirements
are developed.

5.2.1b A, B, C, D Simulink, Stateflow

6 Source code is developed. 5.3.1a A, B, C, D Simulink Coder, Embedded
Coder

7 Executable Object Code is
produced and integrated in the
target computer.

5.3.1a A, B, C, D Embedded Coder — IDE
Link

The following sections describe in more detail the potential impacts for each
software development process objective when using Model-Based Design, if
applicable, as compared to traditional development.

High-Level Requirements are Developed
If models are defined as high-level software requirements, then the Simulink
and Stateflow products may be used to develop the high-level software

1-10

Software Development Process

requirements. The components within these models, such as Simulink
blocks or Stateflow objects, would then trace to the appropriate system-level
requirements, which are developed in accordance with ARP47542. The models
should be developed in accordance with the modeling standards defined
during the planning process.

Derived High-Level Requirements are Developed
If models are defined as high-level software requirements, any Simulink or
Stateflow components that do not trace to the system requirements would be
identified as derived requirements. These derived requirements would be
provided to the safety assessment process.

Software Architecture Is Developed
Architecture of individual software modules may be defined by the Simulink
and Stateflow models, including sequencing and interfacing of the various
elements within the models. If model reference capability is used, then the
model dependency viewer may be used to document the architecture of the
software modules that are integrated using this capability.

The higher-level architecture of how the Model-Based Design generated
code interfaces to other code within the system must be defined separately.
This may include an interface to the real-time operating system (RTOS),
calling sequence for the code generated from the Model-Based Design, and
data interface to other code modules.

Low-Level Requirements are Developed
If models are defined as low-level software requirements, then the Simulink
and Stateflow products may be used to develop the low-level software
requirements. The components within these models would then trace to
the appropriate high-level software requirements. The models should be
developed in accordance with the modeling standards defined during the
planning process.

2. SAE International. Certification Considerations for Highly-Integrated Or Complex
Aircraft Systems, 1996.

1-11

1 DO-178B Software Life Cycle

If the models are defined as high-level software requirements and source code
is generated directly from those models, this objective does not apply.

Derived Low-Level Requirements are Developed
If models are defined as low-level software requirements, then any Simulink
or Stateflow components that do not trace to the high-level software
requirements would be identified as derived requirements. These derived
requirements would be provided to the safety assessment process.

If the models are defined as high-level software requirements, library
components or reusable model reference functions may be considered to be
low-level derived requirements.

Source Code Is Developed
Embedded Coder and Simulink Coder products may be used to generate
the source code from the model. The source code can trace to the model
components through the use of appropriate commenting options. The source
code can be generated in accordance with MISRA C standards, with some
exceptions, using appropriate modeling standards.

Executable Object Code Is Produced and Integrated
in the Target Computer
The generated source code may be compiled, linked, and the executable object
code automatically downloaded to a target processor or DSP using the IDE
Link capability of the Embedded Coder product.

Alternatively, the generated source code may be compiled and linked using
standard compilers and linkers. The make file that the compiler uses may
be generated by the Embedded Coder product or developed manually. The
executable object code is then loaded onto the target computer.

1-12

Verification of Requirements Process

Verification of Requirements Process
The following table contains a summary of the verification of requirements
process objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also provides the available Model-Based Design tools that may be used in
satisfying the objectives.

Table A-3 Verification of Requirements Process

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 Software high-level
requirements comply with
system requirements.

6.3.1a A, B, C, D Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest, Simulink
Report Generator, DO
Qualification Kit

2 High-level requirements are
accurate and consistent.

6.3.1b A, B, C, D Simulink Verification and
Validation, SystemTest,
Simulink Report Generator,
DO Qualification Kit

3 High-level requirements are
compatible with the target
computer.

6.3.1c A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

4 High-level requirements are
verifiable.

6.3.1d A, B, C Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest, Simulink
Report Generator, DO
Qualification Kit

5 High-level requirements
conform to standards.

6.3.1e A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

1-13

1 DO-178B Software Life Cycle

Table A-3 Verification of Requirements Process (Continued)

Objective Sections Software
Levels

Available Products for
Model-Based Design

6 High-level requirements
are traceable to system
requirements.

6.3.1f A, B, C, D Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

7 Algorithms are accurate. 6.3.1g A, B, C Simulink Verification and
Validation, SystemTest,
Simulink Report Generator,
DO Qualification Kit

The following sections describe in more detail the potential impacts for each
of the verification of requirements process objectives when using Model-Based
Design, if applicable, as compared to traditional development.

Software High-Level Requirements Comply with
System Requirements
If models are defined as high-level software requirements, compliance with
system requirements may be accomplished using a combination of model
reviews, model analysis, and simulation. The Simulink Report Generator
product may be used to generate a System Design Description report that
includes a trace report to the system requirements. The SystemTest and
Simulink Verification and Validation products may be used to develop test
cases based on the system requirements, and execute those test cases on
the model to assist in verifying that the system requirements are satisfied.
The Simulink Design Verifier product may be used to prove properties of the
model to assist in verifying certain system requirements are satisfied.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

1-14

Verification of Requirements Process

High-Level Requirements Are Accurate and Consistent
If models are defined as high-level software requirements, accuracy and
consistency may be verified using a combination of model reviews and
simulation. The Simulink Report Generator product may be used to generate
a System Design Description report that includes a trace report to the
higher-level requirements. The SystemTest and Simulink Verification and
Validation products may be used to develop and execute test cases based on
the system requirements to assist in verifying the accuracy and consistency.
The Model Advisor may be used to assist in verifying that the diagnostic
settings used by the Simulink product are appropriate for simulation and also
to verify the proper usage of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Compatible with the
Target Computer
If models are defined as high-level software requirements, compatibility with
target hardware may be accomplished using a combination of model reviews
and Model Advisor checks. The Simulink Report Generator product may be
used to generate a System Design Description report that includes a trace
report to the higher-level requirements. The Model Advisor may be used to
assist in verifying that the hardware interface settings used by the Embedded
Coder product are appropriate for the target processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

1-15

1 DO-178B Software Life Cycle

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Verifiable
If models are defined as high-level software requirements, verification may
be accomplished using a combination of model reviews and simulation.
The Simulink Report Generator product may be used to generate a System
Design Description report that includes a trace report to the higher-level
requirements. The SystemTest and Simulink Verification and Validation
products may be used to develop test cases from the system requirements and
execute those test cases on the model. During execution of these test cases, a
Simulink Verification and Validation model coverage report may be generated
to assist in verifying that all requirements are fully verified. The coverage
report may assist in finding conditions and decisions in the model that cannot
be reached, indicating that the requirements may not be fully verifiable.
The Simulink Design Verifier product may be used to identify untestable
or unreachable model conditions and decisions using test case generation,
indicating that the high-level requirements may not be fully verifiable. The
Model Advisor may be used to assist in verifying the proper usage of certain
Simulink blocks and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178B checks in the Simulink Verification and Validation product.

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

1-16

Verification of Requirements Process

High-Level Requirements Conform to Standards
If models are defined as high-level software requirements, conformance to
standards may be accomplished using a combination of model reviews and
Model Advisor checks. The Simulink Report Generator product may be used
to generate a System Design Description report that includes a trace report
to the higher-level requirements. The Model Advisor may verify predefined
model standards, and may be customized using an API to perform checks
defined by the user that may be unique to their application.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

High-Level Requirements Are Traceable to System
Requirements
If models are defined as high-level software requirements, traceability to
system requirements may be accomplished by model reviews that include
a report generated by the Requirements Management Interface (RMI), a
capability of the Simulink Verification and Validation product. The Simulink
Report Generator product may be used to generate a System Design
Description report that includes a trace report to the system requirements.
The Model Advisor may be used to assist in verifying that requirements
links are consistent, and can identify model components that do not trace
to requirements.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

1-17

1 DO-178B Software Life Cycle

• System Design Description report in the Simulink Report Generator
product.

Algorithms Are Accurate
If models are defined as high-level software requirements, accuracy of
the algorithms may be verified using a combination of model reviews and
simulation. The Simulink Report Generator product may be used to generate
a System Design Description report that includes a trace report to the
higher-level requirements. The SystemTest and Simulink Verification and
Validation products may be used to develop test cases from the system
requirements and execute those test cases on the model, assisting in verifying
the accuracy of the algorithms within the model. The Model Advisor may
be used to assist in verifying the proper usage of certain Simulink blocks
and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

1-18

Verification of Design Process

Verification of Design Process
The following table contains a summary of the verification of design process
objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also describes the available Model-Based Design tools for satisfying the
objectives.

Table A-4 Verification of Design Process

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 Low-level requirements
comply with high-level
requirements.

6.3.2a A, B, C Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest, Simulink
Report Generator, DO Qualification
Kit

2 Low-level requirements
are accurate and
consistent.

6.3.2b A, B, C Simulink Verification and
Validation, SystemTest, Simulink
Report Generator, DO Qualification
Kit

3 Low-level requirements
are compatible with the
target computer.

6.3.2c A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

4 Low-level requirements
are verifiable.

6.3.2d A, B Simulink Verification and
Validation, Simulink Design
Verifier, SystemTest, Simulink
Report Generator, DO Qualification
Kit

5 Low-level requirements
conform to standards.

6.3.2e A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

6 Low-level requirements
are traceable to
high-level requirements.

6.3.2f A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

1-19

1 DO-178B Software Life Cycle

Table A-4 Verification of Design Process (Continued)

Objective Sections Software
Levels

Available Products for
Model-Based Design

7 Algorithms are accurate. 6.3.2g A, B, C Simulink Verification and
Validation, SystemTest, Simulink
Report Generator, DO Qualification
Kit

8 Software architecture
is compatible with
high-level requirements.

6.3.3a A, B, C Simulink Report Generator

9 Software architecture is
consistent.

6.3.3b A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

10 Software architecture
is compatible with the
target computer.

6.3.3c A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

11 Software architecture is
verifiable.

6.3.3d A, B Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

12 Software architecture
conforms to standards.

6.3.3e A, B, C Simulink Verification and
Validation, Simulink Report
Generator, DO Qualification Kit

13 Software partitioning
integrity is confirmed.

6.3.3f A, B, C, D Not applicable

The following sections describe in more detail the potential impacts for each of
the verification of design process objectives when using Model-Based Design,
if applicable, as compared to traditional development.

Low-Level Requirements Comply with High-Level
Requirements
If models are defined as low-level software requirements, compliance with
high-level software requirements may be accomplished using a combination

1-20

Verification of Design Process

of model reviews, model analysis, and simulation. The Simulink Report
Generator product may be used to generate a System Design Description
report that includes a trace report to the system requirements. The
SystemTest and Simulink Verification and Validation products may be used
to develop test cases from the high-level requirements and execute those test
cases on the model to assist in verifying that the high-level requirements
are satisfied. The Simulink Design Verifier product may be used to prove
properties of the model in order to assist in verifying certain high-level
requirements are satisfied.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, code may be
generated directly from the high-level requirements, and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

Low-Level Requirements Are Accurate and Consistent
If models are defined as low-level software requirements, accuracy and
consistency may be verified using a combination of model reviews and
simulation. The Simulink Report Generator product may be used to generate
a System Design Description report that includes a trace report to the
higher-level requirements. The SystemTest and Simulink Verification and
Validation products may be used to develop test cases from the high-level
requirements, and execute those test cases on the model to assist in verifying
the accuracy and consistency. The Model Advisor may be used to assist in
verifying the diagnostic settings used by the Simulink product are appropriate
for simulation, and also to verify the proper usage of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

1-21

1 DO-178B Software Life Cycle

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, code may be
generated directly from the high-level requirements, and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

Low-Level Requirements Are Compatible with the
Target Computer
If models are defined as low-level software requirements, compatibility with
target hardware may be accomplished using a combination of model reviews
and Model Advisor checks. The Simulink Report Generator product may be
used to generate a System Design Description report that includes a trace
report to the higher-level requirements. The Model Advisor may be used to
assist in verifying that the hardware interface settings used by the Embedded
Coder product are appropriate for the target processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, code may be
generated directly from the high-level requirements, and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

1-22

Verification of Design Process

Low-Level Requirements Are Verifiable
If models are defined as low-level software requirements, verifiability may
be accomplished using a combination of model reviews and simulation.
The Simulink Report Generator product may be used to generate a System
Design Description report that includes a trace report to the higher-level
requirements. The SystemTest and Simulink Verification and Validation
products may be used to develop test cases from the high-level requirements,
and execute those test cases on the model. During execution of these test
cases, a Simulink Verification and Validation model coverage report may be
generated to assist in verifying that all requirements are fully verified. The
coverage report may assist in finding conditions and decisions in the model
that cannot be reached, indicating that the design may not be fully verifiable.
The Simulink Design Verifier product may be used to identify untestable
or unreachable model conditions and decisions using test case generation,
indicating that the low-level requirements may not be fully verifiable. The
Model Advisor may be used to assist in verifying the proper usage of certain
Simulink blocks and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• DO-178B checks in the Simulink Verification and Validation product.

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, code may be
generated directly from the high-level requirements, and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

Low-Level Requirements Conform to Standards
If models are defined as low-level software requirements, conformance to
standards may be accomplished using a combination of model reviews and

1-23

1 DO-178B Software Life Cycle

Model Advisor checks. The Simulink Report Generator product may be used
to generate a System Design Description report that includes a trace report
to the higher-level requirements. The Model Advisor may be used to verify
predefined model standards and may also be customized to perform checks
defined by the user that are unique for their application.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, then code may
be generated directly from the high-level requirements and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

Low-Level Requirements Are Traceable to High-Level
Requirements
If models are defined as low-level software requirements, traceability to
high-level software requirements may be accomplished using a combination
of model reviews and the Requirements Management Interface (RMI). The
Simulink Report Generator product may be used to generate a System Design
Description report that includes a trace report to the high-level software
requirements. The Model Advisor may be used to assist in verifying that
requirements links are consistent.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

1-24

Verification of Design Process

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, then code may
be generated directly from the high-level requirements and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

Algorithms Are Accurate
If models are defined as low-level software requirements, accuracy of the
algorithms may be verified using a combination of model reviews and
simulation. The Simulink Report Generator product may be used to generate
a System Design Description report that includes a trace report to the
higher-level requirements. The SystemTest and Simulink Verification and
Validation products may be used to develop test cases from the high-level
requirements, and execute those test cases on the model, assisting in verifying
the accuracy of the algorithms within the model. The Model Advisor may
be used to assist in verifying the proper usage of certain Simulink blocks
and data types.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

• System Design Description report in the Simulink Report Generator
product.

If the models are defined as high-level software requirements, code may be
generated directly from the high-level requirements, and this objective does
not apply. For details, see DO-178B, Section 6.1.b.

1-25

1 DO-178B Software Life Cycle

Software Architecture Is Compatible with High-Level
Requirements
Compatibility of the software architecture within the models may be verified
using model reviews. The Simulink Report Generator product may be used
to generate a System Design Description report. The Model Dependency
Viewer in the Simulink product can show the architecture of reference models
and library blocks.

The System Design Description report capability in the Simulink Report
Generator product may be qualified as a verification tool using the DO
Qualification Kit product.

The higher-level software architecture, which includes the real-time operating
system (RTOS) and other code, may be verified using traditional methods.

Software Architecture Is Consistent
Consistency of the software architecture within the models may be verified
using model reviews. The Simulink Report Generator product may be used
to generate a System Design Description report. The Model Dependency
Viewer in the Simulink product can show the architecture of reference models
and library blocks. The Model Advisor may be used to assist in verifying
the diagnostic settings used by the Simulink product are appropriate for
simulation, and also to verify the proper use of certain Simulink blocks.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

1-26

Verification of Design Process

Software Architecture Is Compatible with the Target
Computer
Target compatibility of the software architecture within the models may be
verified using model reviews. The Simulink Report Generator product may be
used to generate a System Design Description report. The Model Advisor may
be used to verify that the hardware interface settings used by the Embedded
Coder product are appropriate for the target processor.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Architecture Is Verifiable
Verification of the software architecture may be accomplished using a
combination of model reviews and simulation. The Simulink Report Generator
product may be used to generate a System Design Description report. The
SystemTest and Simulink Verification and Validation products may be used
to develop test cases from the high-level requirements, and execute those test
cases on the model. During execution of these test cases, a model coverage
report may be generated to assist in verifying that all requirements are fully
verified. The coverage report may assist in finding conditions and decisions in
the model architecture that cannot be reached, indicating that the software
architecture may not be fully verifiable.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• When used for pass and fail determination, the Limit Check element in the
SystemTest product.

1-27

1 DO-178B Software Life Cycle

• Model coverage in the Simulink Verification and Validation product.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Architecture Conforms to Standards
Conformance to standards may be accomplished using a combination of model
reviews and Model Advisor checks. The Simulink Report Generator product
may be used to generate a System Design Description report. The Model
Advisor may be used to verify predefined model standards, and may also be
customized to perform checks defined by the user that are unique for their
application.

The following capabilities may be qualified as a verification tool using the
DO Qualification Kit product:

• DO-178B checks in the Simulink Verification and Validation product.

• Custom checks added by the user, but the user is responsible for defining
the Tool Operational Requirements, Test Cases, Procedures, and Expected
Results for those custom checks.

• System Design Description report in the Simulink Report Generator
product.

The higher-level software architecture, which includes the RTOS and other
code, may be verified using traditional methods.

Software Partitioning Integrity Is Confirmed
Because partitioning is outside of the scope of Model-Based Design,
partitioning may be verified using traditional methods.

1-28

Verification of Coding and Integration Process

Verification of Coding and Integration Process
The following table contains a summary of the verification of coding and
integration process objectives from DO-178B, including the objective,
applicable DO-178B reference sections, and software levels applicable to the
objective. The table also describes the available Model-Based Design tools
for satisfying the objectives.

Table A-5 Verification of Coding and Integration Process

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 Source code complies with
low-level requirements.

6.3.4a A, B, C Embedded Coder

2 Source code complies with
software architecture.

6.3.4b A, B, C Embedded Coder, Polyspace, DO
Qualification Kit

3 Source code is verifiable. 6.3.4c A, B Embedded Coder, Polyspace, DO
Qualification Kit

4 Source code conforms to
standards.

6.3.4d A, B, C Embedded Coder, Polyspace, DO
Qualification Kit

5 Source code is traceable to
low-level requirements.

6.3.4e A, B, C Embedded Coder, Simulink
Verification and Validation, DO
Qualification Kit

6 Source code is accurate
and consistent.

6.3.4f A, B, C Embedded Coder, Polyspace, DO
Qualification Kit

7 Output of software
integration process is
complete and correct.

6.3.5 A, B, C Not applicable

The following sections describe in more detail the potential impacts for each
of the verification of coding and integration process objectives when using
Model-Based Design, if applicable, as compared to traditional development.

1-29

1 DO-178B Software Life Cycle

Source Code Complies with Low-Level Requirements
Compliance to low-level requirements may be verified using code reviews.
The Embedded Coder product produces a code generation report that may
assist in code reviews by providing traceability from the code to the models,
including hyperlinks to the objects in the models.

Source Code Complies with Software Architecture
Compliance to software architecture may be verified using code reviews. The
Embedded Coder product produces a code generation report that may assist in
code reviews by providing traceability from the code to the models, including
hyperlinks to the objects in the models. The Polyspace products for C/C++ can
assist in the identification of data-flow and control-flow errors.

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Source Code Is Verifiable
Verifiability of the code may be verified using code reviews. The Embedded
Coder product produces a code generation report that may assist in code
reviews by providing traceability from the code to the models, including
hyperlinks to the objects in the models. The Polyspace products for C/C++ can
assist in the identification of unreachable, and therefore nonverifiable, code.

The Polyspace products for C/C++ work with the Simulink product, allowing
errors identified in the code to be traced to the corresponding model blocks.

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Source Code Conforms to Standards
Standards compliance of source code may be verified using the MISRA C
checker in the Polyspace products for C/C++. The MISRA C checker works
with the Simulink product.

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

1-30

Verification of Coding and Integration Process

Source Code Is Traceable to Low-Level Requirements
Traceability of source code to low-level requirements may be verified using
code reviews. The Embedded Coder product produces a code generation report
that may assist in code reviews by providing traceability from the code to
the models, including hyperlinks to the objects in the models. The Model
Advisor may be used to assist in verifying the commenting settings used by
the Embedded Coder product are appropriate for tracing the source code to
the models.

The DO-178B checks in the Simulink Verification and Validation product may
be qualified as a verification tool using the DO Qualification Kit product.

Source Code Is Accurate and Consistent
Accuracy and consistency of source code may be verified using code reviews.
The Embedded Coder product produces a code generation report that may
assist in code reviews by providing traceability from the code to the models,
including hyperlinks to the objects in the models.

The Polyspace products for C/C++ have the capability to identify run-time
errors, such as potential underflow, overflow, divide by zero, etc. The
Polyspace products for C/C++ also have the capability to detect uninitialized
variables and constants.

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Output of Software Integration Process Is Complete
and Correct
Because the integration process is outside of the scope of Model-Based Design,
the integration process may be verified using traditional methods.

1-31

1 DO-178B Software Life Cycle

Testing of Outputs of Integration Process
The following table contains a summary of the testing of outputs of integration
process objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also describes the available Model-Based Design tools for satisfying the
objectives.

Table A-6 Testing of Outputs of Integration Process

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 Executable Object Code
complies with high-level
requirements.

6.4.2.1,
6.4.3

A, B, C, D SystemTest, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

2 Executable Object Code
is robust with high-level
requirements.

6.4.2.2,
6.4.3

A, B, C, D SystemTest, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

3 Executable Object Code
complies with low-level
requirements.

6.4.2.1,
6.4.3

A, B, C SystemTest, Simulink Design
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

4 Executable Object Code
is robust with low-level
requirements.

6.4.2.2,
6.4.3

A, B, C SystemTest, Simulink Design
Verifier, Embedded Coder
— IDE Link, Polyspace, DO
Qualification Kit

5 Executable Object Code
is compatible with target
computer.

6.4.3a A, B, C, D Embedded Coder — IDE Link

The following sections describe in more detail the potential impacts for each
testing of outputs of integration process objective when using Model-Based
Design, if applicable, as compared to traditional development.

1-32

Testing of Outputs of Integration Process

Executable Object Code Complies with High-Level
Requirements
The executable object code may be verified by reusing the same test cases that
are used to verify the models. During execution of the model verification tests,
using the SystemTest product, the inputs and outputs of each model under
test can be logged and saved for use in verifying the executable object code.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some errors detected
by the Polyspace products for C/C++ may not be detected during traditional
dynamic testing.

The Polyspace products for C/C++ help to exhaustively identify:

• Uninitialized variables

• Parameter passing errors

• Data corruption, especially global data

• Inadequate, end-to-end numerical resolution

• Detection of arithmetic faults

• Detection of violation of array limits

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Global data corruption of shared variables without protection mechanism

1-33

1 DO-178B Software Life Cycle

• Incorrect sequencing of events and operations

• Detection of loops leading to run-time error

• Detection of incorrect logic decision leading to irrefutable dead code or
run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Executable Object Code Is Robust with High-Level
Requirements
Robustness tests should be developed against the models and may be done
using the SystemTest product. The robustness of the executable object
code may be verified by reusing the same test cases that are used to verify
robustness of the models. During execution of the model verification tests,
using the SystemTest product, the inputs and outputs of each model under
test can be logged and saved for use in verifying the executable object code.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Detection of loops leading to run-time error

1-34

Testing of Outputs of Integration Process

• Detection of overflows

• Detection of certain run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Executable Object Code Complies with Low-Level
Requirements
The Simulink Design Verifier product may be used to generate low-level tests
from the model. These test cases can be run on the model and the executable
object code, and the results compared. The comparison is used to demonstrate
that the executable object code complies with the low-level requirements.

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to exhaustively identify:

• Uninitialized variables

• Parameter passing errors

• Data corruption, especially global data

• Inadequate, end-to-end numerical resolution

• Detection of arithmetic faults

• Detection of violation of array limits

1-35

1 DO-178B Software Life Cycle

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Global data corruption of shared variables without protection mechanism

• Incorrect sequencing of events and operations

• Detection of loops leading to run-time error

• Detection of incorrect logic decision leading to irrefutable dead code or
run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit product.

Alternatively, verification against the low-level requirements may be
eliminated, if requirements based coverage and structural coverage are
achieved using the high-level requirements based tests (for example, software
integration tests). The following guidance is provided in section 6.4 of
DO-178B:

If a test case and its corresponding test procedure are developed and
executed for hardware/software integration testing or software integration
testing and satisfy the requirements-based coverage and structural coverage,
it is not necessary to duplicate the test for low-level testing. Substituting
nominally equivalent low-level tests for high-level tests may be less effective
due to the reduced amount of overall functionality tested.

Executable Object Code Is Robust with Low-Level
Requirements
The Simulink Design Verifier product may be used to generate robustness
tests from the model. These test cases can be run on the model and
the executable object code, and the results compared. The comparison
demonstrates that the executable object code is robust with the low-level
requirements. For robustness test cases, Test Condition and Test Objective
blocks may be used to assist in the definition of test cases that exercise the
object code outside of normal boundary conditions.

1-36

Testing of Outputs of Integration Process

The executable object code may be tested on a target processor or DSP using
the IDE Link capability of the Embedded Coder product. The SystemTest
product may be used to execute these tests and compare the test results to
expected results.

When used for pass and fail determination, the Limit Check element
capability within the SystemTest product may be qualified as a verification
tool using the DO Qualification Kit product.

The Polyspace products for C/C++ may also be used to satisfy this objective by
verifying the source code using abstract interpretation. Some of the errors
detected by the Polyspace products for C/C++ may not be detected during
traditional dynamic testing.

The Polyspace products for C/C++ help to partially identify:

• Incorrect initialization of variables and constants

• Incorrect initialization of variables and constants leading to an underflow
or overflow

• Detection of loops leading to run-time error

• Detection of overflows

• Detection of certain run-time errors

The Polyspace products for C/C++ may be qualified as a verification tool using
the DO Qualification Kit products.

Executable Object Code Is Compatible with Target
Computer
The executable object code may be evaluated for stack usage, memory usage,
and execution time on a target processor or DSP using the IDE Link capability
of the Embedded Coder product.

Other aspects of hardware compatibility such as interrupt handling, resource
contention, hardware interfaces, partitioning, etc., must be verified using
traditional methods.

1-37

1 DO-178B Software Life Cycle

Verification of Verification Process Results
The following table contains a summary of the verification of verification
process results objectives from DO-178B, including the objective, applicable
DO-178B reference sections, and software levels applicable to the objective.
The table also describes the available Model-Based Design tools that may
be used in satisfying the objectives.

Table A-7 Verification of Verification Process Results

Objective Sections Software
Levels

Available Products for
Model-Based Design

1 Test procedures are correct. 6.3.6b A, B, C Simulink Verification and
Validation

2 Test results are correct and
discrepancies explained.

6.3.6c A, B, C SystemTest

3 Test coverage of high-level
requirements is achieved.

6.4.4.1 A, B, C, D Simulink Verification and
Validation

4 Test coverage of low-level
requirements is achieved.

6.4.4.1 A, B, C Simulink Verification and
Validation

5 Test coverage of software
structure (modified
condition/decision) is
achieved.

6.4.4.2 A Not applicable

6 Test coverage of software
structure (decision
coverage) is achieved.

6.4.4.2a,
6.4.4.2b

A, B Not applicable

7 Test coverage of software
structure (statement
coverage) is achieved.

6.4.4.2a,
6.4.4.2b

A, B, C Not applicable

8 Test coverage of software
structure (data coupling
and control) is achieved.

6.4.4.2c A, B, C Not applicable

1-38

Verification of Verification Process Results

The following sections describe in more detail the potential impacts for
each of the verification of verification process results objective when using
Model-Based Design, if applicable, as compared to traditional development.

Test Procedures Are Correct
Correctness of the test procedures from the higher-level requirements may
be verified by reviewing the test procedures. The Simulink Verification
and Validation product may assist in test procedure reviews by providing
traceability from the test cases to the requirements, including hyperlinks to
the requirements in the higher-level requirements document.

Completeness of the test cases generated by the Simulink Design Verifier
product may be verified by executing the test cases on the Simulink model
while measuring model coverage during simulation. The expected results
produced by Simulink may be verified by reviewing the results.

The model coverage capability in the Simulink Verification and Validation
product may be qualified as a verification tool using the DO Qualification
Kit product.

Test Results Are Correct and Discrepancies Explained
Correctness of the test results may be verified by reviewing the test results.
As an alternative, develop a processor-in-the-loop test platform for the
executable object code that could be qualified as a verification tool in order to
determine pass and fail status of the results.

Test Coverage of High-Level Requirements Is
Achieved
Test coverage of high-level software requirements may be verified by
reviewing the test cases and traceability to the high-level requirements. The
Simulink Verification and Validation product can be used to trace the test
cases to the high-level requirements, providing the capability to assist in
verifying that each requirement has associated test cases.

1-39

1 DO-178B Software Life Cycle

Test Coverage of Low-Level Requirements Is Achieved
Test coverage of low-level software requirements may be verified using the
Simulink Verification and Validation model coverage report during execution
of the low-level requirements based tests. The model coverage report provides
data to assist in proving that low-level requirements are fully covered during
testing.

The model coverage capability in the Simulink Verification and Validation
product may be qualified as a verification tool using the DO Qualification
Kit product.

Test Coverage of Software Structure (Modified
Condition/Decision) Is Achieved
Modified condition and decision coverage of the software structure may be
verified using a commercial, off-the-shelf structural coverage analysis tool.
This analysis is accomplished during the execution of the requirements
based tests described in “Executable Object Code Complies with High-Level
Requirements” on page 1-33.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, the model coverage capability
of the Simulink Verification and Validation product may be used during
development of the requirements based test cases. Using the capability helps
predict the effectiveness of the test cases in providing structural coverage
for the generated code.

Test Coverage of Software Structure (Decision
Coverage) Is Achieved
Decision coverage of the software structure may be verified using a
commercial, off-the-shelf structural coverage analysis tool. This analysis is
accomplished during the execution of the requirements based tests described
in “Executable Object Code Complies with High-Level Requirements” on page
1-33.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, the model coverage capability may
be used during development of the requirements based test cases. Using the

1-40

Verification of Verification Process Results

tool helps predict the effectiveness of the test cases in providing structural
coverage for the generated code.

Test Coverage of Software Structure (Statement
Coverage) Is Achieved
Statement coverage of the software structure may be verified using a
commercial, off-the-shelf structural coverage analysis tool. This analysis is
accomplished during the execution of the requirements based tests described
in “Executable Object Code Complies with High-Level Requirements” on page
1-33.

If requirements-based test cases are developed at the model level and reused
for testing of the executable object code, then the model coverage capability
may be used during development of the requirements based test cases. Using
the tool helps predict the effectiveness of the test cases in providing structural
coverage for the generated code.

Test Coverage of Software Structure (Data Coupling
and Control) Is Achieved
Because the data coupling and control is outside of the scope of code generated
using Model-Based Design, data coupling and control may be verified using
traditional methods. The test coverage for data coupling and control involves
verification of the data interfaces to and from the automatically generated
code and the calling sequence of the automatically generated code in relation
to other code modules.

1-41

1 DO-178B Software Life Cycle

Software Configuration Management Process
The following table contains a summary of the configuration management
process objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also describes the potential impact to the process when using Model-Based
Design.

Table A-8 Software Configuration Management Process

Objective Sections Software
Levels

Model-Based Design Process
Impact

1 Configuration items
are identified.

7.2.1 A, B, C, D No impact

2 Baselines and
traceability are
established.

7.2.2 A, B, C, D Use of Requirements Management
Interface (RMI) and traditional
baseline establishment

3 Problem reporting,
change control,
change review,
and configuration
status accounting are
established.

7.2.3, 7.2.4,
7.2.5, 7.2.6

A, B, C, D No impact

4 Archive, retrieval,
and release are
established.

7.2.7 A, B, C, D No impact

5 Software load control
is established.

7.2.8 A, B, C, D No impact

6 Software life cycle
environment control
is established.

7.2.9 A, B, C, D No impact

The following sections describe in more detail the potential impacts for each
configuration management process objective when using Model-Based Design,
if applicable, as compared to traditional development.

1-42

Software Configuration Management Process

Configuration Items Are Identified
For projects using Model-Based Design, throughout the project, the following
artifacts may have to be configured and identified:

• High-level requirements (level above the models)

• Models

• System Design Description and trace reports

• Model Advisor reports

• Automatically generated code

• Model test harnesses

• Model test scripts

• SystemTest files

• Model test results reports

• Model coverage reports

• Object code structural coverage reports

These artifacts are in addition to, or substitute for, traditional configured
items.

Baselines and Traceability Are Established
Establishing baselines and traceability is the same as for traditional projects.
Part of the traceability may be covered by the Requirements Management
Interface (RMI).

Problem Reporting, Change Control, Change Review,
and Configuration Status Accounting Are Established
Establishing problem reporting, change control, change review, and
configuration status accounting is the same as for traditional projects.

1-43

1 DO-178B Software Life Cycle

Archive, Retrieval, and Release Are Established
Establishing archive, retrieval, and release is the same as for traditional
projects. The version of the Model-Based Design tools used on the project may
have to be archived.

Software Load Control Is Established
Establishing software load control is the same as for traditional projects.

Software Life Cycle Environment Control Is
Established
Establishing software life cycle environment control is the same as for
traditional projects.

1-44

Software Quality Assurance Process

Software Quality Assurance Process
The following table contains a summary of the software quality assurance
process objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective is applicable
to. The table also describes the potential impact to the process when using
Model-Based Design.

Table A-9 Software Quality Assurance Process

Objective Sections Software
Levels

Model-Based Design Process
Impact

1 Assurance is obtained that
software development and
integral processes comply
with approved software
plans and standards.

8.1a A, B, C, D No impact

2 Assurance is obtained that
transition criteria for the
software life cycle processes
are satisfied.

8.1b A, B No impact

3 Software conformity review
is completed.

8.1c, 8.3 A, B, C, D No impact

The following sections describe in more detail the potential impacts for each
software quality assurance process objective when using Model-Based Design,
if applicable, as compared to traditional development.

Assurance Is Obtained That Software Development
and Integral Processes Comply with Approved
Software Plans and Standards
Obtaining assurance that software development and integral processes
comply with approved software plans and standards is the same as for
traditional projects.

1-45

1 DO-178B Software Life Cycle

Assurance Is Obtained That Transition Criteria for the
Software Life Cycle Processes are Satisfied
Obtaining assurance that transition criteria for the software life cycle
processes are satisfied is the same as for traditional projects.

Software Conformity Review Is Completed
Completing software conformity review is the same as for traditional projects.

1-46

Certification Liaison Process

Certification Liaison Process
The following table contains a summary of the certification liaison process
objectives from DO-178B, including the objective, applicable DO-178B
reference sections, and software levels applicable to the objective. The table
also describes the potential impact to the process when using Model-Based
Design.

Table A-10 Certification Liaison Process

Objective Sections Software
Levels

Model-Based Design Process
Impact

1 Communication and
understanding between
the applicant and the
certification authority is
established.

9.0 A, B, C, D No impact

2 The means of compliance
is proposed and agreement
with the Plan for Software
Aspects of Certification is
obtained.

9.1 A, B, C, D No impact

3 Compliance substantiation
is provided.

9.2 A, B, C, D No impact

The following sections describe in more detail the potential impact for each
certification liaison process objective when using Model-Based Design, if
applicable, as compared to traditional development.

Communication and Understanding Between
the Applicant and the Certification Authority Is
Established
Establishing communication and understanding between the applicant and
the certification authority is the same as for traditional projects.

1-47

1 DO-178B Software Life Cycle

The Means of Compliance Is Proposed and
Agreement with the Plan for Software Aspects of
Certification is Obtained
Proposing the means of compliance and obtaining agreement with the Plan
for Software Aspects of Certification (PSAC) is the same as for traditional
projects.

Compliance Substantiation Is Provided
Providing compliance substantiation is the same as for traditional projects.

1-48

A

Abbreviations

A Abbreviations

Abbreviations

API Application Programming Interface

CRI Certification Review Item

EASA European Aviation Safety Agency

FAA Federal Aviation Administration

IP Issue Paper

PIL Processor-In-the-Loop

PSAC Plan for Software Aspects of Certification

RMI Requirements Management Interface

RTOS real-time operating system

A-2

B

References

B References

Normative References
The Motor Industry Software Reliability Association. MISRA-C:2004
Guidelines for the use of the C language in critical systems. MIRA Limited,
2004.

SAE International. Certification Considerations for Highly-Integrated Or
Complex Aircraft Systems, 1996.

B-2

Index

IndexA
API 1-17 A-2
application programming interface 1-17 A-2
ARP4754 1-10 B-2

C
code conformance 1-3
code generation report 1-3 1-30 to 1-31
code traceability 1-3
code verification 1-3
coding 1-3
coding standards 1-8
compiling 1-3
CRI 1-8 A-2

D
DO Qualification Kit 1-3 1-5 1-8 1-13 to 1-36

1-39 to 1-40
DO-178B 1-2 to 1-3 1-20 to 1-25 1-35

model-based design workflow 1-3
section 6.1.b 1-20 to 1-25
section 6.4 1-35
software life cycle 1-2

DO-178B checks 1-3 1-15 to 1-18 1-21 to 1-24
1-26 to 1-28 1-31

E
EASA 1-5 1-8 A-2
Embedded Coder™ 1-3 1-8 1-10 1-12 1-15 1-22

1-27 1-29 to 1-31

F
FAA 1-5 1-8 A-2

H
high-level verification 1-3

I
IDE Link 1-3 1-10 1-12 1-32 to 1-37
IP 1-8 A-2

L
Limit Check element 1-3 1-14 to 1-16 1-18 1-20

to 1-21 1-23 1-25 1-27 1-33 to 1-36
low-level verification 1-3

M
MISRA C® 1-8 1-12 1-30 B-2
Model Advisor 1-3 1-15 to 1-18 1-21 to 1-28 1-31
Model Advisor reports 1-43
model coverage 1-3 1-16 1-23 1-27 1-39 to 1-41

1-43
model coverage report 1-3 1-16 1-23 1-27 1-40

1-43
model traceability 1-3
model verification 1-3
modeling 1-3
modeling conformance 1-3
modeling standard 1-5 1-8 1-10 to 1-12

P
PIL 1-39 A-2
Polyspace® products for C/C++ 1-3 1-8 1-29 to

1-36
processor-in-the-loop 1-39 A-2
PSAC 1-9 1-47 to 1-48 A-2

R
report

code generation 1-3 1-30 to 1-31
Model Advisor 1-43
model coverage 1-3 1-16 1-23 1-27 1-40 1-43
System Design Description 1-3 1-14 to 1-18

1-20 to 1-28 1-43

Index-1

Index

requirements validation 1-3
RMI 1-3 1-17 1-24 1-42 to 1-43 A-2
RTOS 1-11 1-26 to 1-28 A-2

S
Simulink® Coder™ 1-3 1-8 1-10 1-12
Simulink® Design Verifier™ 1-3 1-8 1-13 to 1-14

1-16 1-19 to 1-20 1-23 1-32 1-35 to 1-36 1-39
Simulink® Report Generator™ 1-3 1-8 1-13 to

1-28
Simulink® Verification and Validation™ 1-3 1-8

1-13 to 1-29 1-31 1-38 to 1-40

Simulink® 1-3 1-6 1-8 1-10 to 1-13 1-15 to 1-16
1-18 1-21 1-23 1-25 to 1-26 1-30 1-39

Stateflow® 1-3 1-8 1-10 to 1-12
System Design Description report 1-3 1-14 to

1-18 1-20 to 1-28 1-43
SystemTest™ 1-3 1-8 1-13 to 1-16 1-18 to 1-21

1-23 1-25 1-27 1-32 to 1-36 1-38 1-43

T
traditional projects 1-43 to 1-48
traditional verification methods 1-26 to 1-28

1-31 1-37 1-41

Index-2

	toc
	DO-178B Software Life Cycle
	DO-178B Software Life Cycle Overview
	Model-Based Design Workflow in DO-178B
	Planning Process
	Software Development and Integral Processes Activities are Defin
	Transition Criteria, Inter-Relationships, and Sequencing Among P
	Software Life-Cycle Environment Is Defined
	Additional Considerations are Addressed
	Software Development Standards are Defined
	Software Plans Comply with DO-178B
	Software Plans are Coordinated

	Software Development Process
	High-Level Requirements are Developed
	Derived High-Level Requirements are Developed
	Software Architecture Is Developed
	Low-Level Requirements are Developed
	Derived Low-Level Requirements are Developed
	Source Code Is Developed
	Executable Object Code Is Produced and Integrated in the Target

	Verification of Requirements Process
	Software High-Level Requirements Comply with System Requirements
	High-Level Requirements Are Accurate and Consistent
	High-Level Requirements Are Compatible with the Target Computer
	High-Level Requirements Are Verifiable
	High-Level Requirements Conform to Standards
	High-Level Requirements Are Traceable to System Requirements
	Algorithms Are Accurate

	Verification of Design Process
	Low-Level Requirements Comply with High-Level Requirements
	Low-Level Requirements Are Accurate and Consistent
	Low-Level Requirements Are Compatible with the Target Computer
	Low-Level Requirements Are Verifiable
	Low-Level Requirements Conform to Standards
	Low-Level Requirements Are Traceable to High-Level Requirements
	Algorithms Are Accurate
	Software Architecture Is Compatible with High-Level Requirements
	Software Architecture Is Consistent
	Software Architecture Is Compatible with the Target Computer
	Software Architecture Is Verifiable
	Software Architecture Conforms to Standards
	Software Partitioning Integrity Is Confirmed

	Verification of Coding and Integration Process
	Source Code Complies with Low-Level Requirements
	Source Code Complies with Software Architecture
	Source Code Is Verifiable
	Source Code Conforms to Standards
	Source Code Is Traceable to Low-Level Requirements
	Source Code Is Accurate and Consistent
	Output of Software Integration Process Is Complete and Correct

	Testing of Outputs of Integration Process
	Executable Object Code Complies with High-Level Requirements
	Executable Object Code Is Robust with High-Level Requirements
	Executable Object Code Complies with Low-Level Requirements
	Executable Object Code Is Robust with Low-Level Requirements
	Executable Object Code Is Compatible with Target Computer

	Verification of Verification Process Results
	Test Procedures Are Correct
	Test Results Are Correct and Discrepancies Explained
	Test Coverage of High-Level Requirements Is Achieved
	Test Coverage of Low-Level Requirements Is Achieved
	Test Coverage of Software Structure (Modified Condition/Decision
	Test Coverage of Software Structure (Decision Coverage) Is Achie
	Test Coverage of Software Structure (Statement Coverage) Is Achi
	Test Coverage of Software Structure (Data Coupling and Control)

	Software Configuration Management Process
	Configuration Items Are Identified
	Baselines and Traceability Are Established
	Problem Reporting, Change Control, Change Review, and Configurat
	Archive, Retrieval, and Release Are Established
	Software Load Control Is Established
	Software Life Cycle Environment Control Is Established

	Software Quality Assurance Process
	Assurance Is Obtained That Software Development and Integral Pro
	Assurance Is Obtained That Transition Criteria for the Software
	Software Conformity Review Is Completed

	Certification Liaison Process
	Communication and Understanding Between the Applicant and the Ce
	The Means of Compliance Is Proposed and Agreement with the Plan
	Compliance Substantiation Is Provided

	Abbreviations
	Abbreviations

	References
	Normative References

	Index

	tables
	Table A-1: Planning Process
	Table A-2 Software Development Process
	Table A-3 Verification of Requirements Process
	Table A-4 Verification of Design Process
	Table A-5 Verification of Coding and Integration Process
	Table A-6 Testing of Outputs of Integration Process
	Table A-7 Verification of Verification Process Results
	Table A-8 Software Configuration Management Process
	Table A-9 Software Quality Assurance Process
	Table A-10 Certification Liaison Process

